[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[2] |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
[3] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46.
|
[4] |
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218.
|
[5] |
Liu Z, Xiang Y, Zheng Y, et al. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology[J]. Front Immunol, 2022, 20(13): 1027124.
|
[6] |
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11(4): 1731.
|
[7] |
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization [J]. Cell Death Dis, 2019, 10(11): 829.
|
[8] |
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1): 156.
|
[9] |
Huang C, Ou R, Chen X, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC[J]. J Exp Clin Cancer Res, 2021, 40(1): 304.
|
[10] |
Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer[J]. Cell Death Differ, 2019, 26(11): 2447-2463.
|
[11] |
DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy [J]. Nat Rev Immunol, 2019, 19(6): 369-382.
|
[12] |
Wang X, Duanmu J, Fu X, et al. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment[J]. J Transl Med, 2020, 18(1): 324.
|
[13] |
李秀勤, 韩腾辉, 朱军, 等. 基于机器学习的结直肠癌微卫星不稳定基因挖掘及其应用价值分析[J]. 中国普通外科杂志, 2022, 31(10): 1355-1362.
|
[14] |
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457.
|
[15] |
Zhao W, Liu M, Zhang M, et al. Effects of inflammation on the immune microenvironment in gastric cancer[J]. Front Oncol, 2021, 11(13): 690298.
|
[16] |
Wang H, Zhou L. Random survival forest with space extensions for censored data[J]. Artif Intell Med, 2017, 79(6): 52-61.
|
[17] |
Taylor JM. Random survival forests[J]. J Thorac Oncol, 2011, 6(12): 1974-1975.
|
[18] |
陈哲, 许恒敏, 李哲轩, 等. 随机生存森林: 基于机器学习算法的生存分析模型[J]. 中华预防医学杂志, 2021, 55(1): 104-109.
|
[19] |
宋欠欠, 武晓岩, 侯艳, 等. 随机生存森林在高维基因组数据生存分析中的应用[J]. 中国卫生统计, 2013, 30(6): 786-789.
|
[20] |
Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): Development and Implementation[J]. J Med Internet Res, 2021, 23(7): e27633.
|
[21] |
Kovács SA, Győrffy B. Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: a systematic review[J]. J Transl Med, 2022, 20(1): 249.
|
[22] |
Jiménez-Sánchez A, Cast O, Miller ML. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods[J]. Cancer Res, 2019, 79(24): 6238-6246.
|
[23] |
Luo D, Feng W, Ma Y, et al. Identification and validation of a novel prognostic model of inflammation-related gene signature of lung adenocarcinoma[J]. Sci Rep, 2022, 12(1): 14729.
|
[24] |
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-w514.
|
[25] |
Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110.
|
[26] |
Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer[J]. Front Immunol, 2020, 11(12): 2039.
|
[27] |
He X, Chen H, Zhong X, et al. BST2 induced macrophage M2 polarization to promote the progression of colorectal cancer [J]. Int J Biol Sci, 2023, 19(1): 331-345.
|
[28] |
Kamada R, Kudoh F, Ito S, et al. Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors[J]. Pharmacol Ther, 2020, 215(11): 107622.
|
[29] |
Henmi T, Amano K, Nagaura Y, et al. A mechanism for the suppression of interleukin-1-induced nuclear factor kappaB activation by protein phosphatase 2Ceta-2[J]. Biochem J, 2009, 423(1): 71-78.
|
[30] |
Apte RN, Dotan S, Elkabets M, et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions[J]. Cancer Metastasis Rev, 2006, 25(3): 387-408.
|
[31] |
Young LC, Rodriguez-Viciana P. MRAS: a close but understudied member of the RAS family[J]. Cold Spring Harb Perspect Med, 2018, 8(12): a033621.
|
[32] |
Hauseman ZJ, Fodor M, Dhembi A, et al. Structure of the MRAS-SHOC2-PP1C phosphatase complex[J]. Nature, 2022, 609(7926): 416-423.
|
[33] |
Kwon JJ, Hajian B, Bian Y, et al. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex[J]. Nature, 2022, 609(7926): 408-415.
|
[34] |
Gao A, Liu X, Lin W, et al. Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity [J]. J Immunother Cancer, 2021, 9(3): e001536.
|
[35] |
Osawa J, Karakawa M, Taniguchi A, et al. Functional regulation of the protein phosphatase PPM1M by phosphorylation at multiple sites with Ser/Thr-Pro motifs[J]. Arch Biochem Biophys, 2024, 753(3): 109887.
|