[1] |
Ferlitsch M, Moss A, Hassan C, et al. Colorectal polypectomy and endoscopic mucosal resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline[J]. Endoscopy, 2017, 49(3): 270-297.
|
[2] |
Ono H, Yao K, Fujishiro M, et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer (second edition)[J]. Dig Endosc, 2021, 33(1): 4-20.
|
[3] |
Tontini GE, Neumann H. Endoscopic classification for colorectal tumors using narrow-band imaging[J]. Dig Endosc, 2016, 28(5): 537-538.
|
[4] |
Wang Y, Li W, Wang Y, et al. Diagnostic performance of narrow-band imaging international colorectal endoscopic and Japanese narrow-band imaging expert team classification systems for colorectal cancer and precancerous lesions[J]. World J Gastrointest Oncol, 2021, 13(1): 58-68.
|
[5] |
Zhuo X, Lu Y, Sun J. IDDF2021-ABS-0082 Application and learning curve of nice classification for colorectal polyps under non-magnifying endoscopy[J]. Gut, 2021, 70(Suppl. 2): A111.
|
[6] |
Gong EJ, Bang CS, Lee JJ, et al. No-code platform-based deep-learning models for prediction of colorectal polyp histology from white-light endoscopy images: development and performance verification[J]. J Pers Med, 2022, 12(6): 963.
|
[7] |
Garcia-Rodriguez A, Tudela Y, Cordova H, et al. In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy[J]. Endosc Int Open, 2022, 10(9): E1201-E1207.
|
[8] |
Wang P, Liu P, Glissen Brown JR, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study[J]. Gastroenterology, 2020,159(4): 1252-1261.
|
[9] |
Hassan C, East J, Radaelli F, et al. Bowel preparation for colonoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2019[J]. Endoscopy, 2019, 51(8): 775-794.
|
[10] |
Tanaka S, Sano Y. Aim to unify the narrow band imaging (NBI) magnifying classification for colorectal tumors: current status in Japan from a summary of the consensus symposium in the 79th Annual Meeting of the Japan Gastroenterological Endoscopy Society[J]. Dig Endosc, 2011, 23(Suppl. 1): 131-139.
|
[11] |
Russell BC, Torralba A, Murphy KP, et al. LabelMe: a database and web-based tool for image annotation[J]. IJCV, 2008, 77(1): 157-173.
|
[12] |
Athalye C, Arnaout R. Domain-guided data augmentation for deep learning on medical imaging[J]. PloS One, 2023, 18(3): e282532.
|
[13] |
Kang LW, Wang IS, Chou KL, et al. Image-based real-time fire detection using deep learning with data augmentation for vision-based surveillance applications[C]. Taipei: 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019.
|
[14] |
Qiu Z, Rong S, Ye L. YOLF-ShipPnet: improved retinanet with pyramid vision transformer[J]. Int J Comput Int Sys, 2023, 16(1): 58.
|
[15] |
Shin H, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE transactions on medical imaging, 2016, 35(5): 1285-1298.
|
[16] |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
[17] |
Berbís MA, Aneiros-Fernández J, Mendoza Olivares FJ, et al. Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases[J]. WJG, 2021, 27(27): 4395-4412.
|
[18] |
Yang R, Yu Y. Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis[J]. Front Oncol, 2021, 11: 638182.
|
[19] |
Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]. Long Beach, CA: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
|
[20] |
Hewett DG, Kaltenbach T, Sano Y, et al. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging[J]. Gastroenterology, 2012, 143(3): 599-607.
|
[21] |
Chang JY. Artificial intelligence-based colorectal polyp histology prediction using narrow-band image-magnifying colonoscopy: a stepping stone for clinical practice[J]. Clin Endosc, 2022, 55(5): 699-700.
|
[22] |
Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy[J]. Gastroenterology, 2018, 155(4): 1069-1078.
|
[23] |
Gkionis IG, Flamourakis ME, Tsagkataki ES, et al. Multidimensional analysis of the learning curve for laparoscopic colorectal surgery in a regional hospital: the implementation of a standardized surgical procedure counterbalances the lack of experience[J]. BMC Surgery, 2020, 20(1): 308.
|
[24] |
Chen H, Wang R, Du J, et al. Feature refinement method based on the two-stage detection framework for similar pest detection in the field[J]. Insects, 2023, 14(10): 819.
|