切换至 "中华医学电子期刊资源库"

中华结直肠疾病电子杂志 ›› 2012, Vol. 01 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-3224.2012.01.01

所属专题: 文献

述评

microRNAs在结直肠癌中的研究进展
杨宝峰1,()   
  1. 1. 150081 哈尔滨,哈尔滨医科大学药理学教研室 省部共建生物医药国家重点实验室 心血管药物研究教育部重点实验室
  • 收稿日期:2012-06-02 出版日期:2012-10-25
  • 通信作者: 杨宝峰
  • 基金资助:
    国家自然科学基金创新研究群体项目(81121003); 国家自然科学基金重点项目(81130088)

Research advances on microRNAs in colorectal cancer

Bao-feng YANG1,()   

  1. 1. Departmentof Pharmacology, State-province Key Laboratories of Biomedicine Pharmaceutics of China, Harbin Medical University, Harbin 150081, China
  • Received:2012-06-02 Published:2012-10-25
  • Corresponding author: Bao-feng YANG
  • About author:
    Corresponding author: YANG Bao-feng, Email:
引用本文:

杨宝峰. microRNAs在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2012, 01(01): 1-5.

Bao-feng YANG. Research advances on microRNAs in colorectal cancer[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2012, 01(01): 1-5.

microRNAs(miRNAs)是一类长约22个核苷酸的内源性非编码RNA,通过与靶基因3’端非编码区结合,抑制靶miRNAs翻译或直接使其降解,参与调节多种生理和病理过程。近年来大量研究表明,miRNAs在结直肠癌发生与发展过程中扮演着促癌或抑癌基因的角色,可作为诊断标志物和治疗靶点。结直肠癌是一类高发病率和高死亡率的肠道肿瘤。本文对miRNAs在结直肠癌中的作用机制、诊断、治疗及耐药性等最新研究进展予以阐述。

MicroRNAs (miRNAs) are a class of endogenous, noncoding small RNAs, 22nt in length. Repressing the translation and inducing the degradation of target miRNAs genes by binding to the 3’-UTR participate in regulating multiple physiological and pathological processes. Many recent research implicates that miRNAs play oncogenic and tumor suppressor role in the initiation and progression of colorectal cancer. Thus, miRNAs are suggested as important markers in diagnosing and treating colorectal cancer. Colorectal cancer is one of intestinal tumor with high morbidity and mortality. This article reviews the recent research advances on molecular mechanism, diagnosis, treatment and drug resistance of miRNAs in colorectal cancer.

图1 调控结直肠癌十大特征的miRNAs
[1]
Jemal A,Siegel R,Xu J,Ward E, et al.Cancer statistics, 2010[J]. CA Cancer J Clin, 2010, 60(5): 277-300.
[2]
Yang L,Parkin DM,Li L, et al.Time trends in cancer mortality in China:1987-1999[J]. Int J Cancer, 2003, 106(5): 771-783.
[3]
Inui M,Martello G,Piccolo S, et al.MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol, 2010, 11(4): 252-263.
[4]
Lujambio A,Lowe SW.The microcosmos of cancer[J]. Nature, 2012, 482(7385): 347-355.
[5]
Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5): 646-674.
[6]
Ruan K,Fang X,Ouyang G. MicroRNAs:novel regulators in the hallmarks of human cancer[J]. Cancer Lett, 2009, 285(2): 116-126.
[7]
Akao Y,Nakagawa Y,Naoe T. Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells[J]. Biol Pharm Bull, 2006, 29(5): 903-906.
[8]
Chen X,Guo X,Zhang H, et al.Role of miR-143 targeting KRAS in colorectal tumorigenesis[J]. Oncogene, 2009, 28(10): 1385-1392.
[9]
Tazawa H,Tsuchiya N,Izumiya M, et al.Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells[J]. Proc Natl Acad Sci U S A, 2007, 04(39): 15472-15477.
[10]
Liu M,Lang N,Qiu M, et al.miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectalcancer cells[J]. Int J Cancer, 2011, 128(6): 1269-1279.
[11]
Sun JY,Huang Y,Li JP, et al.MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin[J]. Biochem Biophys Res Commun, 2012, 420(4): 787-792.
[12]
Baraniskin A,Birkenkamp-Demtroder K,Maghnouj A, et al.MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL[J]. Carcinogenesis, 2012, 33(4): 732-739.
[13]
Shi B,Sepp-Lorenzino L,Prisco M, et al.Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells[J]. J Biol Chem, 2007, 282(45): 32582-32590.
[14]
Luo H,Zou J,Dong Z, et al.Up-regulated miR-17 promotescell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma[J]. Biochem J, 2012, 442(2): 311-321.
[15]
Huang Z,Huang S,Wang Q, et al.MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma[J]. Cancer Res, 2011, 71(7): 2582-2589.
[16]
Nie J,Liu L,Zheng W, et al.MicroRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2[J]. Carcinogenesis, 2012, 33(1): 220-225.
[17]
Zhang H,Li Y,Huang Q, et al.MiR-148a promotes apoptosisby targeting Bcl-2 in colorectal cancer[J]. Cell Death Differ, 2011, 18(11): 1702-1710.
[18]
Nakano H,Miyazawa T,Kinoshita K, et al.Functional screening identifies a microRNA, miR-491 that induces apoptosis bytargeting Bcl-X(L)in colorectal cancer cells[J]. Int J Cancer, 2010, 127(5): 1072-1080.
[19]
Geng L,Zhu B,Dai BH, et al.A let-7/Fas double-negative feedback loop regulates human colon carcinoma cells sensitivity to Fas-related apoptosis[J]. Biochem Biophys Res Commun, 2011, 408(3): 494-499.
[20]
Ma YL,Zhang P,Wang F, et al.Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b[J]. J Cell Mol Med, 2011, 15(9): 1941-1954.
[21]
Grady WM,Parkin RK,Mitchell PS, et al.Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer[J]. Oncogene, 2008, 27(27): 3880-3888.
[22]
Chen ML,Liang LS,Wang XK.miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1[J]. Clin Exp Metastasis, 2012, 29(5): 457-469.
[23]
Wernicke AG,Shamis M,Sidhu KK, et al.Complication Rates in Patients With Negative Axillary Nodes 10 Years After Local Breast Radiotherapy After Either Sentinel Lymph Node Dissection or Axillary Clearance[J]. Am J Clin Oncol, 2011 Nov 29.[Epub ahead of print]
[24]
Liu X,Zhang Z,Sun L, et al.MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4[J]. Carcinogenesis, 2011, 32(12): 1798-1805.
[25]
Asangani IA,Rasheed SA,Nikolova DA, et al.MicroRNA-21(miR-21)post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene, 2008, 27(15): 2128-2136.
[26]
Han HB,Gu J,Zuo HJ, et al.Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer[J]. J Pathol, 2012, 226(3): 544-555.
[27]
Arndt GM,Dossey L,Cullen LM, et al.Characterization ofglobal microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer[J]. BMC Cancer, 2009, 9: 374.
[28]
Sundaram P,Hultine S,Smith LM, et al.P53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers[J]. Cancer Res, 2011, 71(24): 7490-7501.
[29]
Fang JH,Zhou HC,Zeng C, et al.MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulat- ing matrix metalloproteinase 2 expression[J]. Hepatology, 2011, 54(5): 1729-1740.
[30]
Valeri N,Gasparini P,Fabbri M, et al.Modulation of mismatch repair and genomic stability by miR-155[J]. Proc Natl Acad Sci U SA, 2010 A, 107(15): 6982-6987.
[31]
Iliopoulos D,Jaeger SA,Hirsch HA, et al.STAT3 activation ofmiR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J]. Mol Cell, 2010, 39(4): 493-506.
[32]
Xu XT,Xu Q,Tong JL, et al.MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer[J]. Br J Cancer, 2012, 106(7): 1320-1330.
[33]
Kurokawa K,Tanahashi T,Iima T, et al.Role of miR-19b andits target mRNAs in 5-fluorouracil resistance in colon cancer cells[J]. J Gastroenterol, 2012 Mar 1.[Epub ahead of print]
[34]
Boni V,Bitarte N,Cristobal I, et al.miR-192/miR-215 influence5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation[J]. Mol Cancer Ther, 2010, 9(8): 2265-2275.
[35]
Liu K,Li G,Fan C, et al.Increased expression of microRNA-21and its association with chemotherapeutic response in human colorectal cancer[J]. J Int Med Res, 2011, 39(6): 2288-2295.
[36]
Tong JL,Zhang CP,Nie F, et al.MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells[J]. FEBS Lett, 2011, 585(22): 3560-3568.
[37]
Ng EK,Chong WW,Jin H, et al.Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening[J]. Gut, 2009, 58(10): 1375-1381.
[38]
Link A,Balaguer F,Shen Y, et al.Fecal MicroRNAs as novel biomarkers for colon cancer screening[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(7): 1766-1774.
[39]
Schetter AJ,Leung SY,Sohn JJ, et al.MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J]. JAMA, 2008, 299(4): 425-436.
[40]
Pichler M,Winter E,Stotz M, et al.Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer[J]. Br J Cancer, 2012, 106(11): 1826-1832.
[41]
Yamashita S,Yamamoto H,Mimori K, et al.MicroRNA-372 IsAssociated with Poor Prognosisin Colorectal Cancer[J]. Oncology, 2012, 82(4): 205-212.
[42]
[Nishida N,Yokobori T,Mimori K, et al.MicroRNA miR-125b is a prognostic marker in human colorectal cancer[J]. Int J Oncol, 2011, 38(5): 1437-1443.
[43]
Tsuchida A,Ohno S,Wu W, et al.miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer[J]. CancerSci, 2011, 102(12): 2264-2271.
[44]
Ibrahim AF,Weirauch U,Thomas M, et al.MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma[J]. Cancer Res, 2011, 71(15): 5214-5224.
[1] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[2] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[8] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[9] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[10] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[11] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 曾明芬, 王艳. 急性胰腺炎合并脂肪肝患者CT 与彩色多普勒超声诊断参数与其病情和预后的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 531-535.
[14] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[15] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?